

DB2 Nightshow

Facilitate WLM Functions and Tools to Improve your Monitoring

Michael Tiefenbacher

ids-System GmbH

Agenda

- Introduction
 - WLM Intro
 - WLM Licensing
 - WLM Architecture
- WLM Event Monitors
 - Activity event monitor
 - Statistics event monitor
- WLM Table Functions

WorkLoad Management

Why not Leverage it for Monitoring?

Workload Management Overview

- ❖ WLM is available since DB2 9.5
 - It is directly integrated in (every) DB2's engine
- Part of Advanced Editions (AESE and AWSE)
 - But parts of the functionality can be used in all editions!
- Usage
 - Limitation, prioritisation and control of workloads and activities

WLM Licensing

Licensing requirements (Knowledge Center – WLM FAQ)

- The following workload management functions are not restricted by license:
 - Using or altering the default service classes and workloads;
 this includes all monitoring capabilities
 - Creating, altering, or dropping histogram templates
 - Using the DB2 workload management table functions or stored procedures
 - Creating, activating, stopping, or dropping workload management event monitors
 - Granting, altering, or revoking workload privileges

WLM Idea

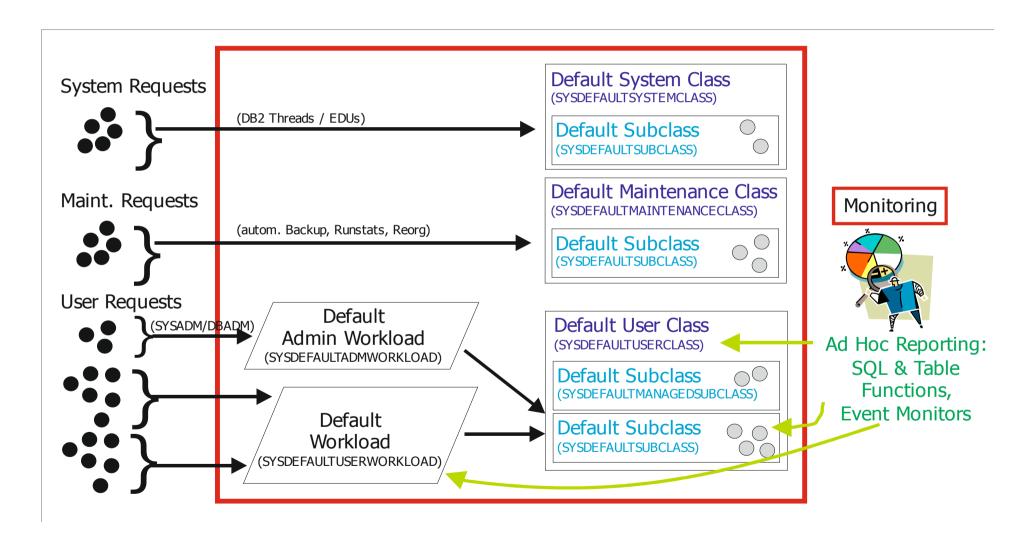
- Identification
 - Only things you can identify can be controlled
- Management
 - Management means here to set priorities or limit resources
- Monitoring
 - Supervise your environment
- ⇒ Just to get the idea
- ⇒ Challenge: collect & understand the company requirements
- ⇒ We will focus on the monitoring part and how it can be used for DB2 monitoring

WLM Terms and Definitions

Activity

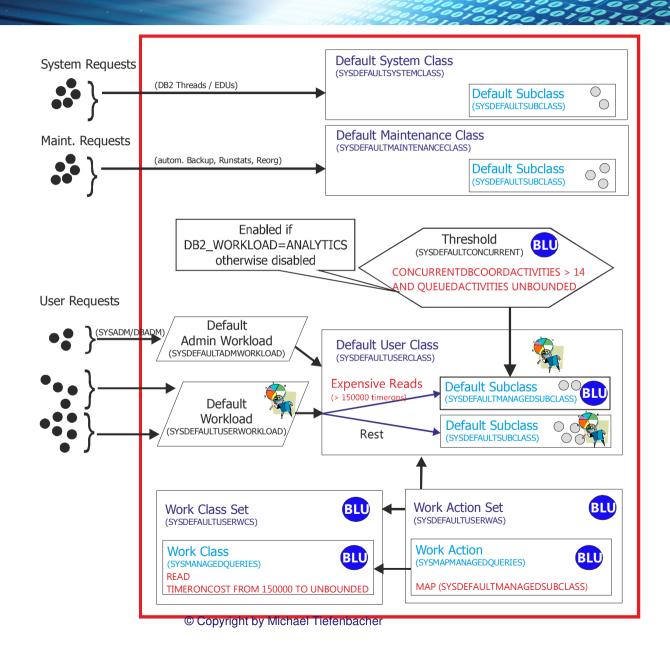
DML, DDL and Loads

Workload

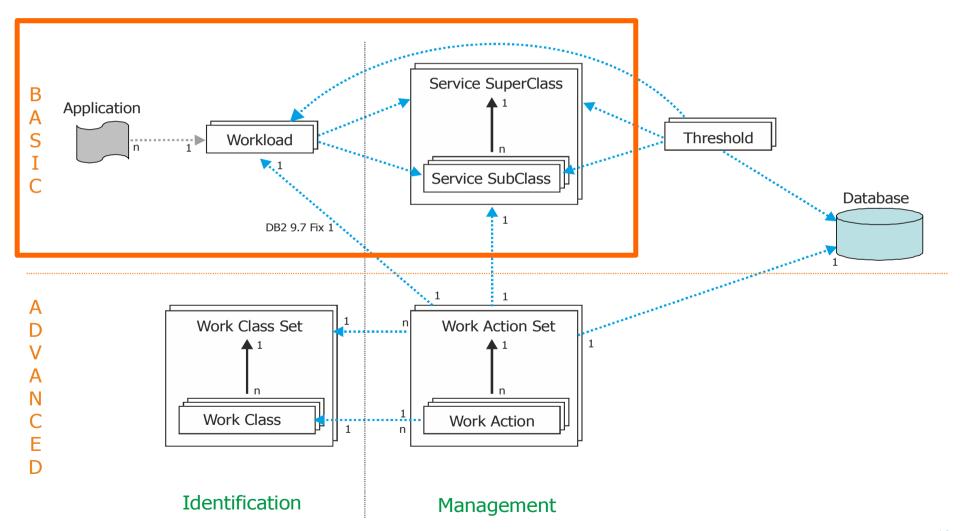

- Every connection is assigned to a workload based on its connection attributes like
 - Application name, system authorization ID
- Evaluation of the defined workload in list order
- Always available: SYSDEFAULTUSERWORKLOAD

Service Class

- Primary point of resource management
- It is a hierarchy with a superclass and subclass
 - superclass 1 : n subclass
- Always available: SYSDEFAULTUSERCLASS



WLM Overview



WLM Overview

WLM Architecture

Agenda

- Introduction
 - WLM Intro
 - WLM Licensing
 - WLM Architecture
- WLM Event Monitors
 - Activity event monitor
 - Statistics event monitor
- WLM Table Functions

WLM Event Monitoring

- Monitoring over a period in time (historical monitoring)
 - Typically use for event monitoring
- Available Event Monitors for WLM
 - Activity event monitor
 - Can capture down to SQL statement level
 - Statistics event monitor
 - Summarized information
 - Threshold Violation event monitor
 - Thresholds are WLM rules
 - Not covered here not useful without a WLM license

WLM Activity Event Monitor

- SQL statement monitoring
- Only executed statements are captured
 - Less than SQL statement event monitor
- Dynamic and static SQL statements are shown

Activity Event Monitoring - Step by Step

Create and start a WLM activity event monitor

No overhead yet

create event monitor DB2ACTIVITIES
 FOR ACTIVITIES write to table;

set event monitor DB2ACTIVITIES state 1;

HINT:

see script: sqllib/misc/wlmevmon.ddl

Activity Event Monitoring - Step by Step

Alter workload to activate monitoring

Monitoring of activity information in this workload

alter workload SYSDEFAULTUSERWORKLOAD

COLLECT ACTIVITY DATA on coordinator
WITH DETAILS AND VALUES;

WITH DETAILS: statement information gets collected

AND VALUES: incl. content of host variables – yes CONTENT!

Attention:

In case of the default workload the monitoring will be for the whole database

Improvement with WLM License

Create additional Workloads

```
CREATE WORKLOAD Cognos

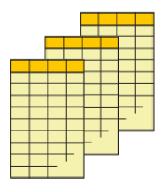
SESSION_USER GROUP ('Deptmgr')

APPLNAME('Cognos')
```

With additional Workloads

- No overhead
- Better focus on specific applications or users
- Easy to do no complete WLM architecture necessary

WLM Event Monitor Tables


ACTIVITY monitor tables:

- CONTROL_DB2ACTIVITIES
- ACTIVITY_DB2ACTIVITIES
- ACTIVITYSTMT_DB2ACTIVITIES
- ACTIVITYVALS DB2ACTIVITIES
- ACTIVITYMETRICS_DB2ACTIVITIES

WITH DETAILS option

WITH DETAILS

AND VALUES option

WLM Activity Event Monitor Evaluation

APPL_NAME\$	STMT_TEXT	STMT_VALUE_DATA \$	QUERY_CA ♦	QUERY_COST_ESTIMATE \$	ACT_EXEC_TIME \$
sqltp1st	DECLARE CURSOR1 CURSOR FOR .	79106	1	23	3814
sqltp1st	UPDATE ACCT SET BALANCE = B.	100	1	8	54
sqltp1st	DECLARE CURSOR2 CURSOR FOR	72	1	15	64
sqltp1st	UPDATE TELLER SET BALANCE =.	. 100	1	8	47
sqltp1st	UPDATE BRANCH SET BALANCE	. 100	1	15	82
sqltp1st	UPDATE BRANCH SET BALANCE	. 27	1	15	82
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	79106	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	. 72	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	. 27	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	148600.000000	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	. 100	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	. 0	1	8	(
sqltp1st	INSERT INTO HISTORY(ACCT_ID, T	. <20 BYTE STRING	1	8	(

Monitor Comparison

	Statement Monitor	Activity Monitor
Created tables	CONTROL_EVMON_STATEMENTS CONNHEADER_EVMON_STATEMENTS STMT_EVMON_STATEMENTS	CONTROL_EVMON_ACTIVITES ACTIVITYMETRICS_EVMON_ACTIVITIES ACTIVITY_EVMON_ACTIVITIES ACTIVITYSTMT_EVMON_ACTIVITIES ACTIVITYVALS_EVMON_ACTIVITIES
SELECT recorded	3 statements (prepare, open, close)	one statement (select)
Note	results need to be interpreted with sqlmon.h	
SQL	static SQL is not shown (stmt_type = 1) but referenced	static and dynamic are shown
Host variable content	Not collected – only "?" are shown	can be collected – captured in ACTIVITYVALS

Create and start a WLM statistics event monitor

No overhead yet

create event monitor DB2STATISTICS
 FOR STATISTICS write to table;

set event monitor DB2STATISTICS state 1;

HINT:

see script: sqllib/misc/wlmevmon.ddl

Statistics Event Monitoring – Step by Step

Adjust workload or service class

 In case of the default service class the monitoring will be for the whole database

alter service class SYSDEFAULTSUBCLASS under SYSDEFAULTUSERCLASS

COLLECT AGGREGATE ACTIVITY DATA BASE

- COLLECT ACTIVITY DATA collects activity information in Service Class
- COLLECT AGGREGATE ACTIVITY DATA aggregates information of a Subclass + histogram
- COLLECT AGGREGATE REQUEST DATA aggregated requests of a Subclass + histogram
- COLLECT AGGREGATE UNIT OF WORK DATA only collects UowLifetime histogram

Collected data in **BASE** level:

- Estimated activity cost high watermark
- Rows returned high watermark
- Temporary table space usage high watermark
- Activity life time, queue time, execution time histogram

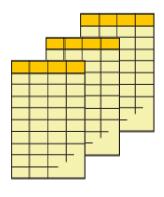
additionally things with EXTENDED option

- Activity DML estimated cost histogram
- Activity DML inter-arrival time histogram

Statistics Event Monitoring – Step by Step

- Send monitor data to event monitor
 - Manually: CALL SYSPROC.WLM_COLLECT_STATS() CALL SYSPROC.MON_COLLECT_STATS() in 10.5
 - Automatically: WLM_COLLECT_INT (DB CFG Parameter)
 - Default: 0 (no collection)
 - specified in minutes

time last_wlm_reset statistics_timestamp


- Additionally the values are reset
 - Deactivating a database will reset them as well

Statistics Event Monitor Tables

Tables for STATISTICS monitoring:

- CONTROL
- SCSTATS (Service Class Stats) (one row per subclass per interval)
- WLSTATS (Workload Stats) (one row per workload and interval)
- HISTOGRAMBIN (41 rows per histogram (3) per interval)
- OSMETRICS (new in 10.5) (one row per interval)
- SCMETRICS (one row per subclass per interval)
- WLMMETRICS (one row per workload and interval)
- Less important (in our case)
 - WCSTATS (Work Class Stats)
 - QSTATS (Queue Stats) (one row per interval)

Statistics Event Monitoring - Evaluation

```
select *
  from SCSTATS_DB2STATISTICS
where SERVICE_SUPERCLASS_NAME = 'SYSDEFAULTUSERCLASS'
  order by STATISTICS_TIMESTAMP desc
```

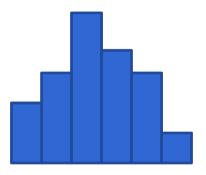
Completed Activities

SERVICE_SUPERCLASS_NAME \$	STATISTICS_TIMESTAMP ♠ (COST_ESTIMATE_TOP \$	ROWS_RETURNED_TOP \$	COORD_ACT_COMPLETED_TOTAL \$
SYSDEFAULTUSERCLASS	Aug 30, 2008 6:38:32 P	0	0	0
SYSDEFAULTUSERCLASS	Aug 30, 2008 6:23:32 P	12467	114	1
SYSDEFAULTUSERCLASS	Aug 30, 2008 6:08:32 P	12467	114	1
SYSDEFAULTUSERCLASS	Aug 30, 2008 5:53:32 P	8774	591	949
SYSDEFAULTUSERCLASS	Aug 30, 2008 5:38:32 P	0	0	0

(only subset)

Statistics Event Monitor

- Workload Statistics via WLSTATS_DB2STATISTICS
 - Many TOP-values (ACT_ROWS_READ_TOP etc.)
 - COORD ACT COMPLETED TOTAL
 - COORD_ACT_EST_COST_AVG
 - COORD_ACT_EXEC_TIME_AVG
 - COORD_ACT_LIFETIME_AVG
- Service Class Statistics via SCSTATS_DB2STATISTICS
 - Many results overlap with WLSTATS
 - CONCURRENT_ACT_TOP
 - CONCURRENT_CONNECTION_TOP
 - COORD_ACT_COMPLETED_TOTAL


Histograms

Histogram Definition

 A histogram is a graphical representation of the distribution of numerical data. To construct a histogram, the first step is to split the range of values into bins —that is, divide the entire range of values into a series of small intervals—and then count how many values fall into each interval. (Wikipedia)

Histograms in DB2

- 41 Bins/Intervals (40 regular intervals+ 1 infinite Bin)
- bin ranges follow a logarithmic scale
- Units (depends on histogram): here milliseconds
- Default upper limit is 21600000 (= 6 hours)
- Can be individually created: CREATE HISTOGRAM Template

Histograms via HISTOGRAMBIN

Histogram	Histogram_type	Prerequisite
ACTIVITY LIFETIME	CoordActLifetime	COLLECT AGGREGATE ACTIVITY DATA base
ACTIVITY QUEUETIME	CoordActQueueTime	COLLECT AGGREGATE ACTIVITY DATA base
ACTIVITY EXECUTETIME	CoordActExecTime	COLLECT AGGREGATE ACTIVITY DATA base
REQUEST EXECUTETIME	ReqExecTime	COLLECT AGGREGATE REQUEST DATA base
ACTIVITY ESTIMATEDCOST	CoordActEstCost	COLLECT AGGREGATE ACTIVITY DATA extended
ACTIVITY INTERARRIVALTIME	CoordActInterArrivalTi me	COLLECT AGGREGATE ACTIVITY DATA extended
UOW LIFETIME	UowLifetime	COLLECT AGGREGATE UNIT OF WORK DATA base

Histograms

Example

BIN_ID \$	воттом ⇔	TOP ≑	SUM_ACTEXECTIME \$
	0	1	1660
:	2 1	2	43
;	3	3	7
4	3	5	25
	5 5	8	28
	8	12	37
	12	19	51
	19	29	41
	29	44	48
10	44	68	34
11	68	103	24
1:	103	158	22
1;	158	241	29
14	241	369	23
15	369	562	8
10	562	858	4
17	858	1309	3
18	1309	1997	3

```
SELECT bin_id,
bottom,
top,
sum(number_in_bin) as Sum_ActExecTime
FROM DB2ADMIN."HISTOGRAMBIN_DB2STATISTICS"
WHERE histogram_type = 'CoordActExecTime'
GROUP BY bin_id, bottom, top
```


Usage

- Differentiate load between
 - Service classes
 - Times
- Prove your service level
- Show how many statements are successfully processed
 - to show you did a great job

Monitor Comparison

	Event Monitor	WLM
Evaluation via SQL		
Filtering	Auth. ID, Appl. ID, Appl. Name	Workload (Connection attribute), Service Class (Statement)
Content of host variables	X	
Monitor switches necessary		
Performance details for SQL	++	++
Generated system load	medium to big	medium
Static SQL available?	indirect	
No extra cost		partially

	Event Monitor	WLM
Bufferpool Monitoring		
Rows Read / Written / Returned		
Sort		
Runstats / Statistics Info Fabricated Stats		
System CPU Time		
Prepare Time etc.	X	
Execution Time		
Number of Executions	indirect	indirect

WLM Clauses – Event Monitor Mapping

Object	Monitor clause	Event Monitor	
	COLLECT ACTIVITY DATA	ACTIVITY	
	COLLECT ACTIVITY METRICS	-	
	COLLECT AGGREGATE ACTIVITY DATA		
Workload	COLLECT AGGREGATE UNIT OF WORK DATA	STATISTICS	
VVOIRIOAU	COLLECT LOCK TIMEOUT DATA	LOCKING	
	COLLECT DEADLOCK DATA		
	COLLECT LOCK WAIT DATA		
	COLLECT UNIT OR WORK DATA	UNIT OF WORK	

WLM Clauses - Event Monitor Mapping

Object	Monitor clause	Event Monitor	
	COLLECT ACTIVITY DATA	ACTIVITY	
Service	COLLECT AGGREGATE ACTIVITY DATA		
Subclass	COLLECT AGGREGATE REQUEST DATA	STATISTICS	
	COLLECT AGGREGATE UNIT OF WORK DATA		
Service	COLLECT REQUEST METRICS		
Superclass	OOLLOT NEQUEST METHOS	UNIT OF WORK	

Agenda

- Introduction
 - WLM Intro
 - WLM Licensing
 - WLM Architecture
- WLM Event Monitors
 - Activity event monitor
 - Statistics event monitor
- WLM Table Functions

WLM Monitoring — Table Functions

- Lots of table functions for real time monitoring
- The returned metrics are similar to the ones of the event monitor
 - Additional metrics with STDDEV
 - i.e. COORD_ACT_LIFETIME_STDDEV
 - Less in the area of locking or tempspace usage
 - i.e. TEMP_TABLESPACE_TOP
- Related DB CFG parameter
 - mon_act_metrics
 - mon_req_metrics

WLM Table Functions — Common Points

- * *_STATS table functions always return a LAST_RESET column
 - since last WLM_COLLECT_STATS
- * *_DETAILS returns metrics as XML in a BLOB column
- Last option is always "Member"
 - -1: current member (also set implicitly)
 - -2: all active database members

WLM Table Functions - Overview

MON GET SERVICE SUPERCLASS STATS(", -2) -- basic statistics for one or more Service Super Classes WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES(", ", -2) -- lists all running workload occurrences of a Service Class MON GET AGENT(", ", NULL, -2) -- lists agents and processes (db2fmp, prefetcher, cleaner) running in the Service Class MON_SAMPLE_SERVICE_CLASS_METRICS(", ", ", ", 30, -2) -- collects Service class data of multiple DBs and shows the differences per intervall (30s) Service SuperClass **Application** Workload MON GET SERVICE_SUBCLASS_STATS(", ", -2) Service SubClass -- Statistics for one or more Service Subclasses MON GET SERVICE SUBCLASS(", ", -2) -- Metrics for one or more Service Subclasses MON GET WORKLOAD STATS(", -2) -- Statistics of one or more Workloads MON GET SERVICE SUBCLASS DETAILS(", ", -2) MON GET WORKLOAD(", -2) -- Metrics for one or more Workloads -- **XML** metrics for one or more Service Subclasses MON GET WORKLOAD DETAILS(", -2) -- XML metrics for one or more Workloads MON_GET_ACTIVITY(NULL, -2) -- lists Activities of an application MON_GET_ACTIVITY_DETAILS(<apphandl>, <uow_id>, <activity_id>, -2) -- **XML** metrics of an activity (incl. statements) → MON CAPTURE ACTIVITY IN PROGRESS(<apphandl>, <uow id>, <activity id>) -- sends activity data to an activity event monitor **RED:** table function ₩LM CANCEL ACTIVITY(<apphandl>, <uow id>, <activity id>) BLUE: stored procedure -- Cancels an Activity MON_SAMPLE_WORKLOAD_METRICS(", ", ", 30, -2) -- Workload metrics diffs in intervall

Further Information I

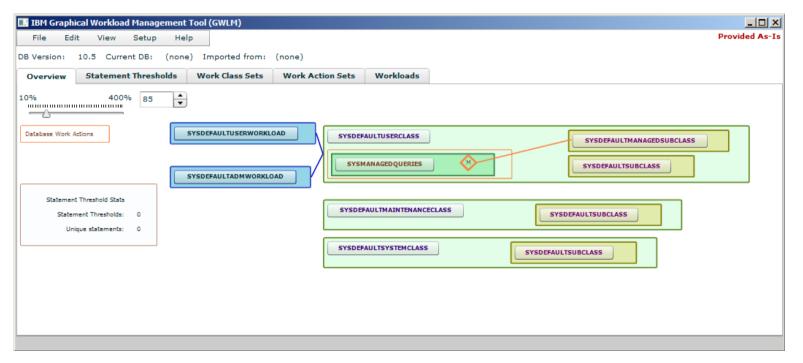
❖ WLM FAQ

- http://www-01.ibm.com/support/knowledgecenter/SSEPGG 10.5.0/com.ib m.db2.luw.admin.wlm.doc/doc/c0052604.html?lang=en
- http://goo.gl/B5JZKA

WLM Best Practices

- https://www.ibm.com/developerworks/community/blogs/SusanVisser/entry/new-db2 wlm best practice paper1?lang=en us
- https://goo.gl/60k8JT

Further Information II


- Articles: DB2 workload management histograms,
 - Part 1: A gentle introduction to histograms
 http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald/dm-0810mcdonald-pdf.pdf
 - Part 2: Understanding the six histograms of DB2 workload management http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald2-pdf.pdf
 - Part 3: Visualizing and deriving statistics from DB2 histograms using SQL
 - http://download.boulder.ibm.com/ibmdl/pub/software/dw/dm/db2/dm-0810mcdonald3/dm-0810mcdonald3-pdf.pdf

Further Information III

New Tool GWLM on DeveloperWorks

- Authors: Kevin Beck and Paul Bird
- Needs Java and Adobe Air
- https://www.ibm.com/developerworks/community/groups/service/html/communityvi ew?communityUuid=87992700-9b53-4137-83a5-1ed837e04858 or https://goo.gl/d30Rb7

WorkLoad Management Why not Leverage it for Monitoring? We Love Monitoring

Michael Tiefenbacher

ids-System GmbH

m.tiefenbacher@ids-system.de

Twitter: @globomike